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Abstract
Multimodal Emotion Recognition in Conversa-
tion (mERC) is an important stepping stone to-
wards intelligent systems interacting with hu-
mans where emotional awareness is crucial to
the system. As a result of advancements in Multi-
modal Machine Learning as well as availability of
datasets for the mERC task has proliferated with
novel ways for computer systems to classify emo-
tions and sentiments based on multi-sensory input.
In this report we introduce two novel multimodal
research contributions for this task, which we
apply on the Multimodal EmotionLines Dataset
(MELD) containing scenes from the Friends TV
Series. Our first contribution is fusing modalities
by performing cross-modal pruning of attention
heads. The second contribution is a multimodal
stochastic voting ensemble which randomly drops
out modality combinations during training and
achieves a new multimodal state of the art on both
F1-score and accuracy. We also delve into abla-
tion studies on two other recent fusion approaches:
pairwise cross-modal attention fusion, and atten-
tion bottlenecks for multimodal fusion. Our code
is available on github1.

1. Introduction
Emotion Recognition in Conversations (ERC) is an impor-
tant area of study in the pursuit of building machines that
interact with humans in an empathetic and understanding
manner. It is an area of research rooted in natural language
processing (NLP) largely due to the ability to retrieve con-
versational data from social media platforms (Poria et al.,
2018). As a result of this ease of access to textual corpora,
most methods have taken a text-only unimodal approach.

However, in human dialogue, we decipher emotions by
leveraging information beyond just text such as intonations
in speech, facial expressions, gestures, and context. Into-
nations in voice can change the emotion conveyed by a
sentence (Levis, 1999), facial expressions can convey sar-
casm, and speaker context can help a listener recognize

1Github Link

emotion based on the who the speaker is.

If we want to model things such as intonations, facial expres-
sions, gestures, and context then we need multiple modal-
ities beyond just text. In the last few years, multimodal
ERC (mERC) has become a popular research topic with fre-
quent state of the art advancements on popular multimodal
datasets (Poria et al., 2018; Zadeh et al., 2018) for mERC.

The mERC task is quite difficult due to the multiple ways we
can perform reasoning to incorporate these different types
of information which are often obvious to humans. This
includes (1) modelling speaker context, (2) extracting infor-
mation such as facial expressions from the visual modality,
(3) understanding relationships between speakers in a dia-
logue, (4) interpreting an utterance by taking previous parts
of the dialogue into context.

In this paper we present two novel methods for multimodal
machine learning and apply them to the task of mERC, one
of which achieves a multimodal state-of-the-art results on
the Multimodal EmotionLines Dataset (MELD). Our main
contributions are as follows:

1. Cross-Modal Pruning: We present a novel cross-
modal pruning approach to reduce redundancy of in-
formation between modalities by splitting representa-
tions into multiple heads and shutting off some of them
based on similarity metrics.

2. Multimodal Stochasic Voting Ensembles: We
present an algorithm where modality combinations
vote for labels. During training we perform random
dropouts dropout on the majority of modality combi-
nations. This method achieves a new multimodal state
of the art F1-score and accuracy on MELD.

3. Evaluating various fusion techniques: We present ab-
lation studies for three different types of representation
fusion techniques: namely, linear projection, pairwise
cross-modal attention fusion, and bottlenecked atten-
tion fusion.

The rest of the paper is organized as follows: in section 2
we look at related work. In section 3 we formally describe
the problem of mERC. In section 4 we describe a baseline
we build on top of in our paper. In section 5, we will go

https://github.com/abuzar08/11777-F22-Project
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over Multimodal Supervised Prototypical Contrastive Learn-
ing in detail. In section 6, we will present our results and
ablation studies. In section 7, we will perform a thorough
analysis of our results. In section 8, we will discuss poten-
tial future research directions given our findings. Finally,
we will conclude our paper in section 9.

2. Related Work
The task of ERC extends further back to 1974, where Ek-
man (1974) conducted a psychology study demonstrating
that emotions could be classified given enough data. These
emotions, namely joy, fear, anger, sadness, disgust, and sur-
prise have been referred to as Ekman’s universal emotions.
The EmotionLines dataset (Hsu et al., 2018) is a supervised
ERC dataset based on text utterances where the goal is to
label each utterance as one of these six emotions (in addi-
tion to neutral, signifying the lack thereof). The Multimodal
EmotionLines Dataset (MELD) (Poria et al., 2018) is a mul-
timodal extension of the EmotionLines dataset that adds
an acoustic and visual modality to these utterances {a, v,
t}.

It should be noted that MELD is not the first multimodal
ERC (mERC) dataset. Earlier datasets include IEMOCAP
(Busso et al., 2008) and SEMAINE (McKeown et al., 2011).
However, the conversations are dyadic in nature, which pre-
cludes the difficulty in tracking individual speaker states and
handling co-reference. There are other, more recent mERC
datasets such as CMU-MOSEI (Zadeh et al., 2018), MOSI,
(Zadeh et al., 2016), and MOUD (Pérez-Rosas et al., 2013).
However, unlike MELD they are not conversational. For
this reason it is not possible to develop methods which lever-
age useful information such as speaker context, dialogue
context, etc.

The authors of MELD implemented a number of baseline
models for their dataset. These include text-CNN (Kim,
2014), bcLSTM (Poria et al., 2017), and DialogueRNN
(Majumder et al., 2018). They applied these models with
different combinations of the three modalities. However,
they did not include the video modality in any of these exper-
iments. The best performing model was the DialogueRNN
(text + audio) with the weighted average F1 score of 60.25.

Since MELD was released, there has been a considerable
amount of different, novel methods proposed. A common-
ality amongst twelve highest scoring methods on MELD2

is the use of RoBERTa (Liu et al., 2019). What differenti-
ates these approaches is how they leverage the additional
information present in MELD to outperform methods sim-
ply classifying text utterances based on mere sentence-level
embeddings. EmoBERTa (Kim & Vossen, 2021) does this

2https://paperswithcode.com/sota/
emotion-recognition-in-conversation-on-meld

by making the model speaker-aware by prepending speaker
names to the utterances. Just as DialogueRNN achieved
state of the by introducing speaker-context, RoBERTa at
the time achieved state-of-the-art on MELD. As these two
examples have shown it can be highly beneficial to apply
reasoning by building the structured nature of a dialogue
into the inference. Saxena et al. (2022) used graph neu-
ral networks to model both the dialogue participants and
speaker personality. M2F-Net (Chudasama et al., 2022), the
current multimodal state-of-the-art does not leverage context
information to the same extent as suggested by EmoBERTa.
Rather, it uses novel feature extractors that leverage fea-
tures such as facial expressions in the video. The authors of
M2F-Net do not specify whether or not they tried prepend-
ing the speaker names in front of each sentence. This does
demonstrate, however, the advantage of extracting relevant
features such as facial expressions. The current state-of-
the-art, SPCL (Song et al., 2022), is unimodal in nature.
SPCL takes advantage of prototypical networks (Snell et al.,
2017b) to address the class imbalance problem in MELD. To
the best of our knowledge there exists no published method
in the research literature which attempts to utilize multiple
modalities to extend SPCL.

3. Problem Statement
3.1. Dataset

For this project, we focus on the mERC task on MELD
(Poria et al., 2018). MELD is a multimodal extension of
the EmotionLines Dataset introduced by Hsu et al. (2018),
which contains data in the acoustic, visual, and text modal-
ities {a, v, t}. MELD contains a total of 1432 dia-
logues where each dialogue contains a sequence of utter-
ances. In total there are 13708 utterances. Each utterance
consists of a video clip {a, v} and a textual transcript
{t}, along with two sets of labels that describe the emotion
and sentiment, respectively. There are 7 emotion classes
in the dataset, joy, sadness, surprise, fear,
disgust, anger, neutral, and three sentiment
classes, positive, negative, neutral. From a
preliminary exploratory data analysis on the dataset, we ob-
serve a class imbalance, where the neutral label presents
itself as a large majority in both the emotion and sentiment
classes.

The dataset has already been split into train, validation,
and test sets. The train set contains 1038 dialogues (9989
utterances). The validation set contains 114 dialogues (1109
utterances). Finally, the test set contains 280 dialogues
(2610 utterances).

https://paperswithcode.com/sota/emotion-recognition-in-conversation-on-meld
https://paperswithcode.com/sota/emotion-recognition-in-conversation-on-meld
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3.2. Task description

In the MELD dataset, the goal is to classify a video clip
utterance ui as having emotion kj where i ∈ {1, ..., N} and
j ∈ {1, ...,K}. N is the number of utterances and K = 3
when classifying sentiments and K = 7 when classifying
emotions.

In the dataset, there are M speakers, where M < N . This
follows from the fact that each utterance ui has only one
speaker. Further, we use ut to denote the utterance at a
particular time-step. Given a dialogue n of length T , we
can denote the sequence of all utterances in that dialogue in
the following manner: u(n)

0 , u
(n)
1 , ..., u

(n)
T . Since we never

reason about more than one dialogue at any given time, we
will drop the n and write the sequence of utterances instead
as u0, u1, ..., uT .

The problem can then either be framed as a sequence tag-
ging problem for every dialogue or simplified to a multiclass
classification problem for every utterance. If framed as a se-
quence tagging problem (akin to parts-of-speech tagging or
named entity recognition), each utterance can be treated as a
token in a dialogue, and one would jointly decode the most
likely sequence of emotions for every utterance within the
dialogue using algorithms like Viterbi decoding. However,
in this domain, given each video clip utterance depends only
on past context, not lookahead, and also contains multiple
words, intonations, or facial expressions, a simplification to
a multiclass classification problem is feasible provided the
context of previous utterances within a dialogue is encoded.

4. Baseline Methology
We implement Supervised Prototypical Contrastive Learn-
ing (SPCL) for Emotion Recognition in Conversation (Song
et al., 2022) as a baseline for this task. The paper addresses
the issue of class imbalance by leveraging prototypical net-
works (Snell et al., 2017a). Interestingly, the authors also
address a problem that arises with MELD having being
collected in a multimodal fashion which resulted in some
utterances’ text being misleading about the emotion that
the utterance carries. To counter this, the authors leveraged
curriculum learning (Bengio et al., 2009) to counter such
extreme samples.

4.1. Encoding the context

We will extend the notation introduced in section 3 to effec-
tively describe SPCL. Here, we use D to denote a dialogue.
The textual transcript for an utterance t is denoted as ut (e.g.
"Oh, honey") and the name of its respective speaker is
denoted as s(ut) (e.g. "Rachel"). Mathematically, we
can describe a particular dialogue n with length Tn as:

D(n) = [s(u1), u1, s(u2), u2, ..., s(uTn
), uTn

] (1)

In our problem setting, we consider the context of k utter-
ances for a dialogue and denote it as as D(n)

t−k:t. This context
is then used as input to predict the label yt for ut. We call
this the context for Dn at timestep t.

D(n)
t−k:t = [s(ut−k), ut−k, ..., s(ut), ut] (2)

During training and inference, D(n)
t−k:t is converted into a

string by concatenating all items in the context. We denote
it as S(n)t−k:t. Here is an example of such as string where
k = 3.

"Rachel: What are you doing
here? Ross: hey, you know,
this building is on my paper
route. Rachel: Oh, honey."

Natural language can be encoded using BERT-like models
by using the encoding of the CLS token as a representation
of the input string. Instead, Song et al. (2022) use prompt-
based learning (Liu et al., 2021) where they construct a
prompt which extends the string S(n)t−k:t by appending "for
ut, st feels <mask>" at the end of it.

We denote the embedding for the "<mask>" token as z,
which is then used for the downstream task of classifying
the utterance ut.

4.2. Prototypical Contrastive Learning

An important contribution from Song et al. (2022) is that
of combining prototypical learning with contrastive learn-
ing to alleviate the class imbalance problem. To lay down
terminology, we have a batch I wich is a set of "<mask>"
token encodings I = {z1...zN}, a score function G, and the
vanilla supervised contrastive loss for zi as:

F(zi, zj) = exp(G(zi, zj)/τ) (3)

Psup(i) =
∑

zp∈P (i)

F(zi, zp) (4)

Nsup(i) =
∑

zj∈I−i

F(zi, zp) (5)

Lsup
i = −log 1

|P (i)|
Psup(i)

Nsup(i)
(6)



MM-SPCL for Multimodal Emotion Recognition in Conversation

Where P (i) is the set of positive samples in I , and I−i =
{zj ∈ I | i ̸= j}. This setup, however, is impacted by
class imbalance. To counter this, prototypical learning is
employed.

A fixed-length queue for each emotion is maintained as
Qj = [zj1...z

j
L] for the jth emotion, a support set of size K

is uniformly sampled from this. A prototype Tj is derived
as the mean of the support set. With this, we augment the
negative jscores of the ith sample as Nspcl(i) = Nsup(i) +∑

k∈E−yi
F(zi, Tk) and the positive scores as Pspcl(i) =

Psup(i) + F(zi, Tyi
). E is the set of all emotion labels and

E−yi
= {yj ∈ E | i ̸= j}. Finally, this gives the SPCL loss:

Lspcl
i = −log 1

|P (i)|+ 1

Pspcl(i)

Nspcl(i)
(7)

4.3. Towards Multimodal SPCL

MELD as a dataset was designed for multimodal tasks, with
human annotations performed by watching video clips and
all three modalities {t, a, v} in mind. The current state-
of the-art (SPCL) however, utilizes just the text modality.
This causes two issues; (1) The model fails to incorporate
information from other modalities, and (2) using this dataset
for unimodal tasks, as in SPCL, requires some way to mit-
igate effects of extreme samples wherein the information
present in the modality in question (for SPCL, text) is
almost misleading, because the right information needed to
predict the emotion correctly lies in other modalities. Thus,
we propose multimodal extensions of SPCL (MM-SPCL)
and the rest of this work focuses on various methods for
these multimodal extensions to the SPCL pipeline. Section
5.1 first discusses feature extraction and attempted fusion
approaches, and then dives into our novel contributions of
cross-modal pruning and multimodal stochastic voting en-
sembling technique for this method.

5. Multimodal Supervised Prototypical
Contrastive Learning

5.1. Feature Extraction

5.1.1. TEXT EMBEDDINGS

We found extending SPCL to MM-SPCL to be non-trivial
primarily since most of the SPCL pipeline is devoted to
curriculum learning and clustering on the unimodal text
embeddings. In fact, the curriculum learning was used as
a workaround to the fact that the SPCL framework tackles
a multimodal dataset with a unimodal approach. Conse-
quently, as mentioned in subsection 4.3 we chose the ex-
tracted embeddings for the mask token, z, as the point
of fusion. However, we did so in two ways. One, for mid-
fusion within the SPCL pipeline, that is, fuse representations

from video (zv) and / or audio (za) modalities with the
text representation, hereafter zt, and feed the fused rep-
resentations ẑ back into the SPCL pipeline for training and
inference. And two, we explored whether the finetuning
of the BERT model whose training is influenced by the
prompting (which produces the prompt’s mask embedding)
and the novel SPCL pipeline (which happens downstream
to the prompting) serve to generate better text embeddings.
Thus, we attempted training SPCL end-to-end, extracting
zt for each utterance in the data via inference after conver-
gence, and training a set of Multi-Layer Perceptrons (MLP)
on various unimodal, bimodal, and trimodal combinations
of utterance representations towards late fusion. Figure 1
demonstrates where the feature extraction takes place in this
setting.

Figure 1: We train SPCL in its entirety and then use the
mask embedding from its prompt as an embedding for an
utterance

5.1.2. VIDEO EMBEDDINGS

For the video embeddings we utilized Clip-ViT (Radford
et al.). Upon analyzing the video data in MELD it is obvious
that there is a considerable cutting back-and-forth between
different camera angles in each scene. We estimated that
the most reliable way to capture the speaker of an utterance
would be to select the middle frame. The reason being that
the start of a clip might still show the speaker of the previous
utterance. Thus we try to avoid this by selecting the middle
frame. Figure 2 demonstrates the extraction.

5.1.3. AUDIO EMBEDDINGS

For the audio embeddings we make use of the audio fea-
tures provided by the authors of MELD (Poria et al., 2018).
These features were extracted with openSMILE (Eyben
et al., 2010). We believe a new method for extraction of
contextualized audio representations is important for this
task, however, we leave it to future work due to resource
constraints in this work.

5.2. Fusion Approaches

5.2.1. LINEAR PROJECTION

In this approach, we simply concatenate embeddings for
different modalities and pass them through a single linear
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Figure 2: Video embedding extraction

layer to project the concatenated vector back to original
dimension of 1024.

5.2.2. CROSS-MODAL ATTENTION

We follow the approach in (Tsai et al., 2019) to perform pair-
wise contextualization of modalities. For the three modali-
ties, text, audio, and video, this translates to 6 differ-
ent transformer encoder blocks. Each encoder block has
5 layers of cross-modal attention, followed by 2 layers of
self-atttention.

For brevity, let us denote the triplet of modalities, text,
audio, and video, by {tav}, then, the six transformers
would perform pairwise attention with pairs: {ta}, {tv},
{at}, {av}, {vt}, and {va} respectively. That is, for each
pair of modalities, the first modality’s embedding denoted
as zl1 forms the query, and the second modality’s vector
embedding zl2 forms the keys and values for the attention
mechanism (Vaswani et al., 2017).

Figure 3: Architecture for pairwise cross-modal fusion (Tsai
et al., 2019).

5.2.3. ATTENTION BOTTLENECKS FOR MULTIMODAL
FUSION

Nagrani et al. (2021) use special-purpose bottleneck nodes
for multimodal fusion. The bottleneck nodes are hypoth-
esized to encourage sharing of only the salient informa-
tion betweeen modalities, by restricting information to flow
between modalities through these nodes and not allowing
direct interactions.

Inspired by this approach, we augment the cross-modal
attention in section 5.2.2 by adding bottleneck nodes zlfsn
between each pair of modality vectors zl1 and zl2. We use the
following equations as presented in (Nagrani et al., 2021).

[ẑl2||ẑlfsn] = CrossModal([zl2||zlfsn; θ]) (8)

[zl+1
1 ||zl+1

fsn] = CrossModal([zl1||ẑlfsn; θ]) (9)

5.3. Cross-modal pruning

Based on the assumptions that all modalities have some
amount of redundancy in the information they carry, and
that the representations for each modality are not aligned,
we introduced a novel cross-modal pruning module prior to
the fusion module in the MM-SPCL pipeline. The idea is
to remove redundant information by explicitly zeroing out
sections of a pruning modality that are similar to sections in
the base modality.

Figure 4: Cross-modal pruning in four steps

Figure 4 depicts the process in four steps. First, split both
the base and the pruning modality into HB and HP heads of
size K (we tested with K ∈ {16, 32, 64}, and HB and HP

varied accordingly). Second, measure similarity between
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each of the base heads and pruning heads. Third, for each
base head, find the pruning head with the maximum sim-
ilarity and shut it off by multiplying it by 0. And fourth,
concatenate the heads and then apply the fusion module of
choice.

5.4. Multimodal Stochastic Voting Ensemble

We have a set of seven different modality combinations:
M = {t,a,v,ta,tv,av,tav}. Three of them are uni-
modal, three are bimodal and one trimodal. Here, we present
an algorithm that we call a Multimodal Stochastic Voting
Ensemble (MSVE). The ensemble voting happens over dif-
ferent modality combinations instead of over the modalities
separately. It is stochastic since at training time we randomly
sample modality combinations for each batch.

Note that the dropout for the ensemble is performed only
during training, at inference time, all modalities are always
provided. We hypothesize that this combats strong modal-
ity combinations overpowering weak ones since a weak
modality combination can not rely on a strong modality
combination being present.

Algorithm 1 MSVE training for a single batch
Inputs: Input feature set X = {xm | m ∈ M}, labels y,
set of MLPs H = {hm | m ∈ M}, modality combination
sample size k.

1: Mk ← SAMPLE(M, k)
2: z ←

∑
m∈Mk

hm(xm)
3: ŷ ← SoftMax(z)
4: L ← CrossEntropy(ŷ, y)
5: backpropagate L
6: update weights for all hm ∈ H

Algorithm 1 describes how training is performed for a single
batch. We have a set of input features and a set of Multi
Layer Perceptrons (MLPs) for each modality combination.
As the input features goes, xt, xa, and xv have been ex-
tracted prior to training as described in Section 5.1. For the
bimodal and trimodal feature combinations we perform sim-
ple concatenation of the unimodal features. As an example,
for audio and video ({ta}) we denote that xta = xt ⊕ xa.

In each batch we sample k modalities where k ∈ N and
k ≤ |M|. For the modalities we sample we feed the input
features into their respective MLPs and sum up their predic-
tions for the seven emotion classes, we empirically chose
k = 2. Figure 5 explains this process pictorially.

With this simple algorithm we achieve state of the art results
on MELD on both F1-score and accuracy as presented in
Section 6.4. Interestingly, all of the MLPs we employ are
very simple. All but two have a single linear layer, one has
two layers and one has three layers. The method does not

Figure 5: A graphical representation of MSVE

need to perform any fine-tuning on large pre-trained models
and as a result has only 350K trainable parameters.

6. Results and Ablation Studies
In this section we present the results of our various mul-
timodal approaches and contrast them with SPCL (Song
et al., 2022) and M2FNet (Chudasama et al., 2022) which
currently top the leaderboard for MELD 3.

Before we delve into the results we want to mention that
we have standardized our evaluation to be based on peak
validation F1-Score instead of peak test F1-Score (as per-
formed in the codebase provided by Song et al.). By doing
so we make sure that the test F1-score and accuracy are
unbiased metrics of the models performance and ensure that
SPCL is evaluated in a consistent manner with M2FNet and
our proposed methods. By ensuring that SPCL is validated
in a similar way to other methods, its performance drops
significantly. The reported F1-score was 67.25 %. Our re-
production using their code achieved 66.53%. This drop,
we hypothesize comes partially as a result of us using a
batch size of 8 instead of 64 due to resource constraints
since a smaller batch size will negatively affect contrastive
learning (Song et al., 2022). However, upon standardization
of evaluation the model’s F1-score drops further to 65.58%.

Table 1 compares our methods to both M2FNet and SPCL.

6.1. Hyperparameters

A learning rate of 1e-4 was chosen empirically by perform-
ing a grid search over the hyperparameter values {1e-2, 1e-3,
5e-4}. For cross-modal and bottleneck fusion, the number

3Leaderboard can be found here

https://paperswithcode.com/sota/emotion-recognition-in-conversation-on-meld
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Method F1 Score (%) Accuracy (%)

M2FNet (multimodal SOTA) 66.71 67.85
Unimodal SPCL (reported) 67.25 NR
Unimodal SPCL (reproduction) 65.58
MM-SPCL-CMPr (ours) 66.12 66.96
MSVE (ours) 66.98 68.54

Table 1: MM-SPCL-CMPr refers to multimodal SPCL
pipeline with Cross-Modal Pruning. NR = Not Reported

of transformer encoder blocks consistently comprise of 5
cross-modal and 2 self-attention blocks.

For bottleneck fusion, results in Table 2 are reported with
a bottleneck size of 8 and mid fusion starting after layer 2
(of 5). These two were chosen based on ablation studies
presented in Table 3.

6.2. Fusion Approaches

Table 2 shows the results of various fusion approaches on
MELD. With most fusion methods, {t, a} seems to perform
worse than {t, v}. We hypothesize that this is due to the
openSMILE audio representations not being speaker or dia-
log context-aware audio representations, and building such
contextualized features might be necessary for the task.

6.3. Cross-modal pruning

We performed ablations with varying sizes of pruning heads
with K ∈ {16, 32, 64}. Table 4 shows the weighted F1-
scores achieved with various modality combinations as well
as head sizes. Throughout our ablations, we maintained
text as the base modality, and audio or video to be
the pruning modality. We then used a single linear layer
as our fusion module of choice when running ablations for
cross-modal pruning. Lastly, we used cosine similarity as
our similarity metric.

In all combinations, except for {t,a}, increasing the size
of the heads led to an improvement in performance and in
all cases the best performance was achieved by using all
three modalities, followed by {t,a}, and lastly {t,v}. It
should be noted, however, that 5 out of 9 of our ablations
resulted in higher F1 scores than the reproduction of SPCL.

6.4. Multimodal Stochastic Voting Ensemble

We performed an ablation study over different modality
combinations and notice that adding modalities and more
interaction monotonically increases both the weighted F1-
score and the accuracy. We found that including {a,v}
degraded the performance and thus we did not include this
combination in our final model.

We further experimented with randomly dropping out modal-
ity combinations during training and observe that this doing

so increases the performance even further. MSVE, both with
and with-out dropout achieves a new multimodal sate-of-
the-art results on both test F1-score and test accuracy (Table
5). We perform early stopping based on the dev split, unlike
SPCL which performs early stopping on the test split.

7. Analysis and Discussion
7.1. Cross-modal pruning

We hypothesize that in general, the worse performance when
pruning the video modality results out of the fact that the text
and the video modality have little information in common,
and shutting off heads essentially takes away valuable infor-
mation from the modality. Further, it is important to note
here that there are several ways to tune cross-modal pruning
to achieve better results, but due to resource constraints, we
push these to future work as highlighted in section 8.3.

Given that the pruning head most similar to each base head
was shut off, a larger head size could lead to a larger part of
the pruning modality being shut off, but considering that we
deliberately did not stop multiple base-heads from shutting
off the same pruning head, it could also lead to a smaller
part of the pruning modality being shut off.

7.2. Multimodal stochastic voting ensemble

We observe interesting characteristics of MSVE such as
monotonically increasing F1-score and accuracy whenever
we increase the number of different modality interactions.
This is in line with what one would expect when adding
more information where the multiple modalities and modal-
ity combinations don’t overpower or confound each other,
which was one of the motivations for the modality combi-
nation drop-out. We further hypothesize that since this is
essentially a type of (very) late fusion, the issue of alignment
doesn’t cause the performance to decrease.

Further, we observe that by performing sampling (dropping
out modality combinations during training) improves met-
rics at test time. During inference we do not perform any
sampling and add up outputs from all modality combina-
tions. We hypothesize that by sampling during training,
we are essentially making the model robust to presence or
absence of information from modalities, effectively regular-
izing the model.

7.3. Qualitative Analysis

In table 6, we present some examples we manually verified
by watching the original video clip. MM-SPCL with text
and audio inputs gets audio context right in (dialogue 111,
utterance 6), where the information about sadness was not
present in text, and therefore, SPCL doesn’t get it right.
However, in another example (dialogue 1, utterance 2),
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Modalities F1-Score (%)
SPCL Linear Projection (LP) Cross-Modal Fusion (CM) Bottleneck Fusion (BT)

{t} 65.58 - - -
{t,a} - 65.66 64.92 64.45
{t,v} - 65.43 66.15 65.91
{t,a,v} - 66.02 65.98 65.36

Table 2: Weighted F1-score for various fusion approaches. Number of bottleneck nodes is consistently kept at 8. Mid fusion
starts at layer 2 of 5.

Bottleneck Fusion F1 Score

# of bottleneck nodes→ 2 5 8
(Mid fusion start layer fixed at 2)

{ta} 63.83 64.45 65.09
{tv} 65.55 65.10 65.68
{tav} 64.58 65.36 65.02

Mid fusion start layer→ 1 2 3
(# of bottleneck nodes fixed at 8)

{ta} 65.18 65.09 65.17
{tv} 65.26 65.68 65.05
{tav} 63.90 65.02 64.10

Table 3: Ablation studies for bottleneck fusion

Modality combinations F1-Score (%)
K=16 K=32 K=64

{ta} 66.03 66.03 65.39
{tv} 63.74 63.74 65.58
{tav} 66.09 66.05 66.12

Table 4: Ablation studies for cross-modal pruning

while audio tone sounds angry, the ground truth label is
joy instead of anger, based on the situation in the scene.
The situational information is not present in either modality,
and thus, the prediction is wrong. More example dialogues
are available in the Appendix 7.

8. Future Work
8.1. Sequence Alignment

By compressing each modality into a 1-D vector per utter-
ance as described in Section 5.1, we effectively average or
sample over the temporal dimension for each utterance and
effectively loose out on valuable information. However, the
transformer-based fusion approaches like pairwise cross-
modal attention that we are using are more adept at handling
temporal sequences in each modality.

Method F1 Score

MSVE (uni) 65.52
MSVE (bi) 66.39
MSVE (uni,bi) 66.46
MSVE (tri) 66.54
MSVE (uni,bi,tri) 66.93
MSVE (uni,bi,tri) + dropout 66.98

Table 5: Weighted F1-scores for MSVE

Therefore, in future work, to tackle this problem, our spe-
cific proposals for the three modalities are:

1. For BERT-based text embeddings optimized using pro-
totypical contrastive learning, use the whole last hidden
state layer instead of the mask embedding.

2. For audio representations, build a new feature extractor.
We will cover this in Section 8.2 in depth.

3. For video representations, instead of sampling the
middle frame of a video, retain representations of all
frames with a higher frame rate.

8.2. Generating better audio representations

For the analysis in this paper, we directly fused audio fea-
tures present in MELD generated through openSMILE (Ey-
ben et al., 2010) with the textual representation of emotions
in SPCL. It is important to note that these audio features are
not learned for emotion prediction or to have explicit char-
acter awareness. The audio features are also devoid of any
temporal context within the dialogues. Further, we know
from our previous analysis (scatter plot in figure 6 in Ap-
pendix B ) that audio features are not separable by emotions
using t-SNE unlike glove-based text features. This points to
a need for contrastive-learning based audio representations
that help hard examples belonging to different emotions to
be pushed farther and similar ones to come closer.

Therefore, we propose to learn audio features via multi-task
contrastive learning. The framework will follow a feature
extractor Fa followed by two classifiers for the tasks in
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Dia,Utt ID Utterance True Label SPCL {t} MM-SPCL {ta} Remarks
1, 2 Joey: Push ’em out, push ’em out, harder,

harder.
joy joy anger Assertive, almost angry tone

1, 3 Joey: Push ’em out, push ’em out, way out! joy anger anger Assertive, almost angry tone
1, 4 Joey: Let’s get that ball and really move,

hey, hey, ho, ho.
joy joy joy Switches to playful joyous tone

111, 3 Chandler: You kissed my best Ross! anger joy anger
111, 4 Mrs. Bing: O-kay. Look, it, it was stupid. sadness sadness sadness
111, 5 Chandler: Really stupid. anger disgust disgust
111, 6 Mrs. Bing: Really stupid. sadness disgust sadness MM-SPCL gets audio context right

Table 6: Disagreements between MM-SPCL {ta} and SPCL on the test set, and our remarks after listening to the raw audio
files for the corresponding dialogue and utterance files. The values under SPCL and MM-SPCL denote the predictions of
the corresponding model.

question, i.e. emotion recognition and character prediction,
to allow for the features learned by Fa to have information
about emotion in the utterance as well as the speaker. The
features from Fa will also be used for contrastive learning
to allow for these features to be separable in the emotion
space. Next, considering each dialogue as a sequence of
audios, we will use a recurrent network (Cho et al., 2014;
Hochreiter & Schmidhuber, 1997) that takes in the learned
features from Fa for the audio corresponding to each turn,
and train it for ERC (in conversation now, since we have
context). The final encodings will be residually added to the
input representations to preserve information.

These new audio features will also help with the sequence
alignment issue in Section 8.1.

8.3. Better pruning techniques

As highlighted in section 6.3, the cross-modal pruning mod-
ule has several points of tuning available which were not
exploited here owing to resource constraints. Therefore,
we propose three avenues for future work that we believe
can give large boosts to performance. This comprises of
1) using more sophisticated fusion techniques than linear
projection, 2) using a similarity threshold instead of looking
for the most similar pruning head for each base head, and 3)
projecting the base and the pruning modalities in a common
space before splitting into multiple heads.

9. Conclusion
In this work, we experiment with various approaches to
build a multimodal supervised prototypical learning frame-
work, including three representation (early) fusion ap-
proaches, and one late fusion ensembling technique with
residual learning. In similar training settings (primarily
constrained batch size), our MSVE algorithm achieves a
weighted average F1 score of 66.98, which beats the previ-
ous multimodal SOTA by +0.27 points, and beats our re-
production of the current unimodal SOTA by +1.40 points.
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A. Appendix: Detailed Dialogue Examples

Dia,Utt ID Utterance True Label SPCL {t} MM-SPCL {ta} Remarks
1, 0 Joey: Come on, Lydia, you can do it. neutral neutral neutral
1, 1 Joey: Push! joy joy anger
1, 2 Joey: Push ’em out, push ’em out, harder,

harder.
joy joy anger Assertive, almost angry tone

1, 3 Joey: Push ’em out, push ’em out, way out! joy anger anger Assertive, almost angry tone
1, 4 Joey: Let’s get that ball and really move,

hey, hey, ho, ho.
joy joy joy Switches to playful joyous tone

85, 0 Joey: But um, I don’t think it’s anything
serious.

neutral neutral neutral Chandler and Joey are scared

85, 1 Chandler: This sounds like a hernia. You
have to—you-you—Go to the doctor!

surprise anger fear since Joey is in pain, and

85, 2 Joey: No way! anger anger fear fear explains the emotion better than anger.
85, 3 Joey: ‘Kay look, if I have to go to the doc-

tor for anything it’s gonna be for this thing
sticking out of my stomach!

anger anger fear Therefore, the ground truth is questionable

111, 3 Chandler: You kissed my best Ross! anger joy anger
111, 4 Mrs. Bing: O-kay. Look, it, it was stupid. sadness sadness sadness
111, 5 Chandler: Really stupid. anger disgust disgust
111, 6 Mrs. Bing: Really stupid. sadness disgust sadness MM-SPCL gets audio context right

279, 11 Rachel: Yeah, I mean, come on Ross, no
one will even notice...

neutral anger neutral

279, 12 Ross: They’re not listening too me? surprise anger surprise MM-SPCL gets audio context right
279, 13 Rachel: Of course they’re listening to you!

Everybody listens to you.
neutral anger neutral

Table 7: (Full) Disagreements between MM-SPCL and SPCL on the test set, and our remarks after listening to the raw audio
files for the corresponding dialogue and utterance files. The values under SPCL and MM-SPCL denote the predictions of
the corresponding model.

Dia,Utt ID Utterance True Label SPCL {t} MM-SPCL {ta} Remarks
17, 3 Ewww! Oh! It’s the Mattress King! disgust surprise disgust
17, 4 Don’t look honey. Change the channel!

Change the channel!
disgust anger anger Disgust portrayed in audio and video, not text

17, 5 Wait! Wait! I wanna see this. After I di-
vorce him, half of that kingdom is gonna be
mine.

joy surprise surprise

17, 6 What a wank! anger disgust disgust Angry voice and facial expressions
88, 8 Joey: Can we please turn this off? sadness anger anger Sadness clearly conveyed in audio and video
88, 9 Rachel: Noo way, Kevin. joy disgust disgust Teasing, sarcastic, but joyous not disgust

Table 8: Examples of erroneous agreements between SPCL and MM-SPCL, and our remarks after listening to the raw video
files for the corresponding dialogue and utterance files. The values under SPCL and MM-SPCL denote the predictions of
the corresponding model.
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B. t-SNE Plots

Figure 6: 2D t-SNE plot for audio features, sentiment (left) and emotion (right).

Figure 7: 2D t-SNE plots of BERT embeddings of utterances with neutral labels included, sentiment (left) and emotion
(right).


