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1 Introduction

Image super-resolution is in essence the task of interpolation of unknown pixels when upscaling an
image. A naive approach to this task is to spread out the pixels into the higher-resolution space and
estimate mixing pixel values with nearby pixels, such as taking a weighted average of neighboring
pixels. However, this tends to fail in reproducing images believable to the human eye. Neural
networks improve on this naive approach by leveraging a prior distribution of training images in order
to hallucinate missing values.

Although super-resolution is in practice a unsupervised task, it can be transformed into a supervised
problem by randomly downsampling high resolution images. This downsampling allows us to recreate
the setting of having low resolution images, but now with ground truth labels. With such ground truth
labels, we can effectively train a model in a supervised fashion for this task.

The primary goal of single image super-resolution (SISR) is to recover a high resolution (HR) image
from its degraded low resolution (LR) counterpart [1]. The task still proves to be a challenge as
there is a limited number of naturally LR-HR image pairs, so several methods have been proposed
to artificially generate LR images from a HR image by using downsampling kernels and adding
noise. Current state-of-the-art techniques in the image super-resolution domain involve the use of
CNN-based models. With SRCNN, Dong et al. [2] introduced the first deep to address the SISR with
only three convolution layers. Models such as EDSR [3] are introduced shortly after, and will be
discussed further in the methods and models section. For this project, we would like to investigate
the performance of a attention-based models in the image super-resolution task.

In recent years, transformers have shown success in the natural language processing field, leveraging
self-attention to model long-range dependencies in an input sequence. They have also addressed
several of the limitations of RNNs and CNNs, such as scalability, parallelizability and complexity.
Even more recently, transformers have shown promising results in the field of computer vision,
particularly in popular tasks such as object detection and image classification which were previously
dominated by CNNs [4].

We will use the DIV2K dataset [5] to train our single-image super-resolution models. The dataset
contains 800 high definition high resolution images and low resolution images that are bicubically
downscaled by 2, 3, and 4 downscaling factors. We will then test the performance of our models
against external datasets that are commonly used in image super-resolution tasks. We will use the
Peak Signal to Noise Ratio (PSNR) [6] and Structural Similarity Index Measure (SSIM) [7] metrics
on the external dataset to check how our model generalizes to real-world LR images.
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2 Background

In our midway report, we aimed to explore the current approaches to super-resolution and establish a
baseline for our experimentation. The ultimate goal of our project is to demonstrate that the use of
attention blocks can be used as a potential improvement to the model. Particularly, our conclusion
was primarily that most state of the art approaches in the field utilized convolutional neural networks
or convolutional neural networks in additional to another technique for this task, such as using a
generative adversarial network. We also looked to utilize an extremely naive approach of using a
sharpening kernel in order to establish a non-machine learning baseline for the task of interpolation.

In addition to exploring the current modeling approaches for this task, we found that the metrics
used for the task of super-resolution are primarily PSNR and SSIM. The problem of super-resolution
is inherently ill-posed as there is not a well-defined solution to the generation of high resolution
images. However, these metrics typically are used as heuristics to the goodness of the upscaling by
the network. Some papers went beyond using these heuristics by using human subjects to judge the
realism of the upscaling [8]. This use of human judgement reflects the ultimate goal of recreating
realistic images; however, due to time and resource limitations, we settled to using heuristic metrics
measurements and visual inspection to evaluate our performance.

Lastly, we found in our preliminary experimentation that reported results on the DIV2K dataset
tended to be varied and difficult to reproduce. Even when using pre-trained models on the DIV2K
dataset, our resulting PSNR values tended to be much lower than the reported values in papers and
code repositories. This indicates that this task requires a large amount of hyperparameter tuning.

3 Related Work

3.1 Deep Learning in Super-Resolution

In upscaling, the primarily task is the interpolation between pixels in the high resolution image.
Super-resolution aims to leverage prior knowledge about images in order to add information not
present in the low resolution image in order to achieve this interpolation. Prior to deep learning,
methods included image statistic methods, edge prediction methods, and example based methods [9].
However, the introduction of deep learning case from the use SRCNN, as shown in figure 1, which
created a simple multi-layer convolutional neural network [10]. This demonstrated that this CNN
architecture has theoretical equivalencies with sparse-coding methods in which patches of the images
are learned based on encoding of patches within the a dataset of images. Neural networks improves
on the sparse-coding methods by learning the appropriate weightings of patches in an end-to-end
method using deep learning.

3.2 EDSR

Building on this introduction to of convolutional neural networks, Enhanced Dynamic Residual
Networks for Single Image Super-Resolution (EDSR) improved on previous models by applying
residual blocks to the model architecture [3]. EDSR fundamentally borrows from ResNet [11] by
introducing skip connections present as residual blocks. Skip connections allows for a better flow of
information within the network by adding outputs from previous layers. This alleviates the issue of a
transformation within a hidden layer of a model potentially degrading important information stored
up that point in the neural network’s forward pass. EDSR primarily motivated our use of residual
blocks in our modeling.

3.3 Iterative Methods for Super-Resolution

In additional to the use of residual blocks to allow for quicker training of the convolutional network,
another improvement to a rudimentary CNN model is the use of iterative upscaling. Specifically,
this iterative approach is found in LapSRN [12] (Deep Laplacian Pyramid Networks), more formally
called as progressive reconstruction. In this network architecture, there are are two parallel branches;
in the first, there is a Laplacian pyramid network constructed to predict residuals from the upscaling
and the second model to perform normal upscaling using CNN. LapSRN differs from traditional
CNN architectures by appling a reconstruction loss to different layers of the network. This allows for
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(a) SRGAN architecture [13]
(b) Single-Image SR EDSR architecture [3]

Figure 1: Architecture Designs of state-of-the-art CNN Models

the model to avoid overfitting to outliers by learning intermediate layers in a supervised manner. This
also informs the use a single architecture for different levels of upscaling by simply truncating the
existing network.

3.4 Generative Adversarial Networks for Super-Resolution

Generative Adversarial Networks (GAN) were invented for the unsupervised learning task of learning
the distribution of the input space and generating synthetic data [14]. In a GAN, there are two distinct
architectures: a generator network and a discriminator network. The generator looks to generate data
from a random sampling. The discriminator looks to learn to differentiate between real and synthetic
data. By using the generator and a real-world dataset, we can implicitly construct a dataset with a
binary label of being real or not. GANs explicitly define an adversarial task in which the discriminator
and generator look to outperform each other. This implicitly causes the generator to learn a proper
distribution of the input data space in order to generate data mimicking real-world data.

In previous framings of the super-resolution problem, the task has been defined as a supervised
learning problem in which we look to reconstruct a high resolution image that has been randomly
downscaled (usually using bicubic scaling). However, super-resolution can also be seen as a problem
of learning the distribution of high-resolution images. An example of this in action is using SRGAN
[13].

3.5 Visual Transformers

The attention module was created for the transformer network in the paper "Attention is all you need"
[15]. Transformers have been used heavily in the Natural Language Processing field as an encoder-
decoder for sequence to sequence tasks like machine translation and text generation. Underlying
transformers’ success is the advancement of the attention module in lieu of convolutional layers
and recurrence relationships. The attention module effectively acts as a "look-up" by dynamically
learning a weighting of the encoding of the sequence. This weighting attributes an importance to
each part of the sequence, which may be effective in the decoder by allowing for a wider search in
the sequence compared to previous models.

Given that transformers were first introduced in 2017, most of the early applications were for the
NLP domain. More recently, transformers have been adopted for tasks in the computer vision domain.
In a visual transformer (ViT), the image is split into patches and treated as a sequence on which the
attention modules can be applied. For example, for benchmark image recognition tasks like ImageNet
and Cifar-100, ViT’s were found to perform similarly well as convolutional neural networks [4].
However, many of the results were mixed; ViT’s tended to perform poorly compared to a CNN when
using smaller datasets. However, when using a larger dataset, the performance was comparable to
state of the art convolutional neural networks used for image recognition tasks. Even so, training a
ViT to a stable state in various tasks still remains a challenge today.
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Figure 2: Residual Block Diagram

Figure 3: Convolutional Block Attention Module

4 Methods

4.1 Full attention-based models

In our first attempt, we looked to make an entirely attention-based architecture for super-resolution.
This is in the same vein as the "Attention is all you need" [15] paper. The motivation for this
design decision is based on the success of ViT on other computer vision tasks, particularly image
recognition tasks [4]. We presumed that the success in other computer vision tasks may translate
to super-resolution. However, we found that using an attention-only model failed to reach results
anywhere close to the state of the art.

The failure of an attention-only model could be attributable to a multitude of reasons. To begin, the
inductive bias for a ViT is far less useful for a computer vision setting than a CNN. When using a
CNN, the use of learned kernels allows that are translationally invariant. However, a ViT is learning
relationships between patches on the image globally. This global nature of the attention nodes both
allows for both more expressive models and more difficult to learn models. Also, ViT in the literature
have been found to give varying and sometimes unpredictable results on computer vision tasks [4].

Due to this poor performance, we did not pursue the idea of implementing a completely attention-
based model for super-resolution. Rather, we looked towards hybrid models that combined convolu-
tion layers and attention modules; this hybrid model is even promoted as a potential possibility for
exploration in the paper introducing visual transformers [4].

4.2 Attention Augmented Convolutional Networks

Rather than using a fully attention-based model, we opted for using a hybrid model in which we
have an attention module after a convolutional layer. Our intuition is that rather than learning a linear
mapping between the kernels, the attention module would be allow for a more expressive feature
mapping than a dense layer. We hypothesize that this expressiveness would lead to an improve on the
previous baseline models. Our approach is similar to Convolutional Block Attention Module (CBAM)
[16], but we differ in that we do not train our convolutional and attention model separately. Rather,
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we train them jointly. In order to experiment our hypothesis, we modified a variety of established
super-resolution architectures in order to test if an attention module improves on previous baselines.

We have used a combination of convolution layers with channel and spatial attention maps to build
our Convolutional Block Attention Module. Given an intermediate feature map F with C channels,
height H and width W, the CBAM sequentially infers a 1D channel attention map Mc of size Cx1x1
and a 2D spatial attention map Ms of size 1xHxW. When combined, the whole process can be
formally defined as:

F′ = Mc(F)⊗ F

F′′ = Ms(F
′)⊗ F′

In the above formulation, ⊗ denote the element-wise multiplication operation, where the attention
values are broadcasted accordingly. This formulation is described visually in Figure 3.

The channel attention map is generated by initially doing global average pooling of the feature map F.
The resulting channel vector Fc is of size Cx1x1 and is passed through a small multiplayer perceptron
of one hidden layer of the dimension C/r, where r is the reduction ration for the hidden channel.
Finally, a batch normalization layer is added to the multilayer perceptron. The same process is done
with maximum average pooling of the feature map F, in an attempt to have more distinctive channel
features. This process is formally defined as:

Mc(F) = σ(MLP (AveragePool(F)) +MLP (MaxPool(F)))

The spatial attention map is generated by taking the input feature map F and generating two inter-
mediate feature maps generated by global average pooling and max pooling. These feature maps
are concatenated and passed through a 1-dimensional convolutional block of 7x7 kernel size. This
process is formally defined as:

Ms(F) = σ(f7x7(Concat(AveragePool(F),MaxPool(F)))

We will be using these elements in the Convolutional Attention Block Module as the attention blocks
to be integrated in existing single-image super-resolution models.

4.2.1 EDSR with Attention

For our EDSR model, we have used the architecture described in the original paper [3], with 16
residual blocks with 64 filters. At the end of each residual block, we have added the Convolutional
Attention Block Module. The final model has 1.52M parameters.

4.2.2 ESPCN with Attention

The Efficient Sub-pixel Convolutional Neural Network (ESPCN) [17] attempts to solve a problem
faced by the CNN-based approaches such as SRCNN and VDSR by removing the need to use
interpolatiomn methods to upsample the low-resolution image. Instead, ESPCN increases the
resolution at the very end of the network and the upscaling is handled by the last layer. This allows
ESPCN to perform single-image super-resolution on-par with the state-of-the-art methods with fewer
computational complexity and cost. For our implementation, we have used 3 convolution layers,
where the first layer has 64 filters and a kernel size of 5x5, the second layer has 32 filters and a kernel
size of 3x3, and the final layer has a kernel of size 3x3. We have added the Convolutional Attention
Block Module after each convolution layer.

4.2.3 SRGAN with Attention

We have implemented SRGAN as described in the original paper [13], where the resulting model has
1.55M parameters. The model is trained with the VGG54 context loss. This loss function is used to
improve the performance by comparing more high level features of the image through looking at the
intermediate activation of the pre-trained VGG-19 network.

The generator module of SRGAN follows the SRResNet architecture, with 16 residual blocks with 64
filters. The discriminator comprises of 8 discriminator blocks containing a single convolution layer
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where the filter sizes increase from 64, 128, 256, to 512 each two-block discriminator block pairs.
The second block in each pair has a stride value of 2.

4.2.4 LAPSRN with Attention

We have implemented the LapSRN architecture introduced by its original authors [12], consisting of
27 layers with residual blocks, progressive reconstruction and the Charbonnier loss function used for
training. The authors argue that the Charbonnier loss function is much more robust against outliers
compared to the L2 loss (mean squared error) which is used on most single-image super-resolution
models. We have added the Convolutional Block Module after each residual block in the feature
extraction section of LapSRN.

4.3 Data and Training

For our training and testing, we used the DIV2K dataset [5]. This dataset is composed of 800 high
resolution images in the training set and 100 images in both the validation and test set. Although
different forms of downsampling are supported, we only focused on 4x bicubic downsampling for
our experimentation. For our training process, we used Adam optimizer with a learning rate of 0.001
and learning rate decay in all experimentation. We also applied random augmentations to the images
in the training data to help with generalization. The models were trained on a large Amazon EC2 G4
instance equipped with an NVIDIA T4 GPU and 3 vCPUs. The SRGAN took around 13 hours to
train, while the remaining models only took around 5 hours. We have trained the non-attention and
attention-based models separately.

5 Results

5.1 Metrics

For the evaluation of our models, we used PSNR and SSIM, which are formally defined below. These
are typically used measurements of the reconstruction error of an image. The task in super-resolution
is more appropriately characterized by the ability to create believable upscaled images. However,
with the existence of ground-truth images in our problem setting, we can approximate this goal by
the reconstruction error.

PSNR(x, y) = 10 log10[max(max(x),max(y))]2

(x−y)2
SSIM (x, y) =

(2µxµy+C1)+(2σxy+C2)
(µ2

x+µ2
y+C1)(σ2

x+σ2
y+C2)

5.2 Results

Our results are shown in Figures 4, 5, and 6. It shows primarily that training with an additional
attention module shows minimal improvement over the baseline. Looking at the resolved images in
Figure 6, it can be seen that the reconstructions using attentions tend to have less artifacts of sharp
white lines and less emphasis on elements with softer lines. It appears that the attention-based models
emphasize less on resolving harder lines, however after a closer look we can observe that they resolve
finer lines better within an image. However, the differences are very subtle, and this corresponds to
the minute differences between the non-attention and attention-based models in Figure 4.

It can also be seen that the SRGAN produces reconstructions are are generally smoother than the other
models, but the differences between the models is very slight. Generally, all the models outperform
our sharpening kernel baseline, but that is a very naive approach to this problem.

5.3 Evaluation

Our results show that there is a general small improvements with by adding attention modules to state
of the art models. We found that in our training, we were not able to reproduce the advertised results
of the state of the art models; however, we think this is likely due to a lack of hyper-parameter search
in our models. Due to our experimentation involving relatively large models and datasets, we had
very limited hyper-parameter search or neural architecture search.

Therefore, it is difficult to conclude that using additional attention modules will lead to a significant
improvement for the task. However, we did find that using attention did improve the heuristic values
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Model PSNR SSIM
EDSR 28.7709 0.7965

EDSR augmented w/ attention 28.8371 0.7938
SRGAN 29.3513 0.78279

SRGAN augmented w/ attention 30.4334 0.7974
ESPCN 27.3786 0.7612

ESPCN augmented w/ attention 27.4080 0.7619
LAPSRN 28.3517 0.78884

LAPSRN augmented w/ attention 28.3681 0.7895

Figure 4: Results on DIV2K Test Set

Figure 5: PSNR and SSIM of EDSR, ESPCN and LAPSRN on validation set during training

across the board for all our architectures. This indicates inconclusively that the attention module
is able to at reproduce the results of convolutional networks with potential to beat those baselines
with further tuning. We expected that using the additional attention modules would improve upon
our baseline models. Our experimental results reflected this expectation, but we had generally very
limited improvement from the baseline models.

6 Discussion and Analysis

The limitations of our approach is primarily that we did not use have a large architecture or hyper-
parameter search in order to fine-tune our architecture. This was primarily due to the fact that we had
limited time and computational resources.

Due to this limitation on computational resources, we make a general assumption that attention
blocks are most appropriate after the convolutional layers in a residual block. The use of residual
blocks comes from the success of models like EDSR [3], and the choice of placing the attention block
after the convolutional layers comes primarily from work on CBAM [16]. We do not have testing to
theoretically or empirically support these design decisions.

Our experimentation does provide an insight to the machine learning community by demonstrating
that adding the attention module to existing state-of-the-art single-image super-resolution models
provides small improvements to the baseline state of art models.

6.1 Future Work

For future work, we think further testing should be done in implementing a complete visual trans-
former (ViT) for this task. Our experimentation showed that using attention modules alongside feature
mappings from convolutional layers can be learned by a model in order to improve performance.
However, this does not give definitive evidence for the effectiveness that utilizing attention modules is
appropriate for this task. Alongside this would likely require more testing around possible architecture
decisions and hyper-parameter tuning.

In addition, so other forms of experimentation that would be effective given more time and resources
is testing the effectiveness of attention modules in settings of differing dataset sizes and different
levels of upscaling (2x, 3x, 8x, etc.) in order to see which settings attention modules are more
appropriate. It was seen in earlier papers [4] that the ViT had varying performances on different
datasets, so maybe a similar phenomena can be shown in the super-resolution setting.
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Figure 6: Super-resolved images obtained through various super-resolution methods
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A Appendix

Implementations of our models and training can be found on the following GitHub repositories:

• https://github.com/athiyadeviyani/super-resolution

• https://github.com/UdaikaranSingh/10707_project
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